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SUSTAINABLE HIGHWAY ENGINEERING

CHALLENGES

« EXTENTION OF LIFECYCLE
 REDUCTION OF ENVIRONMENTAL IMPACT

* CIRCULARITY
« ADAPTATION TO CLIMATE CHANGE - RESILIENT INFRASTRUCTURE



COST AND ENVIRONMENTAL IMPACT OF
INFRASTRUCTURE CONTRACTS

CRADLE-TO-GATE ANALYSES ARE NECESSARY BUT NOT SUFFICIENT
LCA/EPD Framework
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COST AND ENVIRONMENTAL IMPACT OF
INFRASTRUCTURE CONTRACTS

ONLY FULL LIFE CYCLE ASSESSMENTS ARE CORRECT
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A RECIPE FOR DURABLE, COST-EFFECTIVE AND
SUSTAINABLE HIGHWAY ENGINEERING

OPTIMAL v’ Longevity of pavement construction achieved through carefut

PAVEMENT mechanistic analysis
STRUCTURE v Increased structural performance - less, but better quality

DESIGN v Balanced development of all pavement layers

PROPER
HIGHER MATERIALS AND
PRODUCTION TECHNOLOGIES
AND CONSTRUCTION v’ Materials better tailored to function and role in pavement
QUALITY y v’ Higher mechanical performance
vIncreased quality of production and ~ v Innovative materials and technologies
workmanship through process-automation v More use of local and recycled materials

and prediction of results

v’ Stricter adherence to the technological
regime and-recommendations through
machine automation and-process
coordination



We have already done a lot on this issue as
an industry, academia and administration
but we need to accelerate the validation

and implementation of new solutions

Just a few examples...



HIGH-PERFORMANCE PAVEMENTS 2015-2019

FLEXIBLE PERPETUAL PAVEMENT
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HIGH-PERFORMANCEBAQ/EMENTS

3.5 New concepts for pavement

4 ) structures
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PROPER MATERIALS AND TECHNOLOGIES
INNOVATIVE, HIGH-PERFORMANCE, TAILOR-MADE MAT

Foamed asphalt




PROPER MATERIALS AND TECHNOLOGIES
INNOVATIVE, HIGH-PERFORMANCE, TAILOR-MADE MATERIALS
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SUPERIOR CONSTRUCTION TECHNOLOGIES
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ADVANCED LAB AND FIELD TESTS FOR QC

E* Dynamic Stiffness Modulus, SVECD

S —

DSR for G*, MSCR, LAS PQl -nondestructivé tayer compaction
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MECHANISTIC-EMPIRICAL ANALYSIS METHODS
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MECHANISTIC-EMPIRICAL ANALYSI

AASHTOWare Pavement ME

Design Name: 2024-09-11_ver01 | Design Type: New Pavement | Pavement Type: Flexible Pavement
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MECHANISTIC-EMPIRICAL ANALYSIS METHODS

MULTICRITERIA RESULTS OVER A FULL LIFECYCLE

2024-09-11_ver01

/Analysis Output Charts
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PROBABILISTIC ANALYSIS AND PREDICTION

MONTE CARLO METHOD

il Distribution Graph
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PERFORMANCE RELATED SPECIFICATIONS
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PERFORMANCE RELATED SPECIFICATIONS
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DIGITALIZATION FIRST




DIGITALIZATION

The first and most important task is to
collect all the necessary DATA in the
DIGITAL FORM and store them in a
properly designed DATABASE.
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DIGITAL FORM OF D\FA\

RELATIONAL DATABASE
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PRESCRIPTIVE ANALYTICS e Siiseoer

How can we make it better?

Bussines Value »

What might happen?

Why did it happen?

What happened?

ANALYTICS: DESCRIPTIVE DIAGNOSTIC FPREDICTIVE

Complexity »
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INTELLIGENCE

CAN IT BE USEFUL FOR US?
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ARTIFICIAL
INTELLIGENCE

HOW CAN IT BE USEFUL FOR US?



ARTIFICIAL INTELLIGENCE

DEFINITION

Article  Talk Read View source View history | Search Wikipedia Q

. . . . ° ° ° ° °
Artificial Intelligence = mimics ,,cognitive” functions
From Wikipedia, the free encyclopedia ’ , ’
[
"Al" redirects here. For other uses, see Al {disambiguation) and Artificial intelligence (disambiguation). S C h a S I e a r n ] n ’ ’ a n d
Artificial intelligence (Al) is intelligence demonstrated by machines. unlike the Part of a series on u ’,
natural intelligence displayed by humans and animals, which involves Artificial intelligence °
consciousness and emotionality. The distinction between the former and the Major goals. [show] ”
latter categories is often revealed by the acrenym chosen. 'Strong' Al is usually Approaches fshow] ro e m S 0 v] n
labelled as AGI (Artificial General Intelligence) while atiempts to emulate 'natural’ Philosophy ] ”
show]
intelligence have been called ABI (Artificial Biological Intelligence). Leading Al

textbooks define the field as the study of "intelligent agenls”: any device that HEN HIE
perceives its environment and takes actions that maximize its chance of Technology [show]
successfully achieving its goals. B Colloguially, the term "artificial intelligence" is Glossary [show]
often used to describe machines (or computers) that mimic "cognitive" functions voree

that humans associate with the human mind, such as "learning" and "problem
solving™ 1!

As machines become increasingly capable, tasks considered to require "intelligence" are often removed from the definition of WO r kS m l I C h be tte r t h a n S ta n d a r
Al, a phenomenon known as the Al effect. [S]Aqu\p in Tesler's Theorem says "Al is whatever hasn't been done yet. (81 For
instance, optical character recognition is frequently excluded from things considered to be AL having become a routine

. . °
technology. 181 Modern machine capabilities generally classified as Al include successfully understanding human speech, el
competing at the highest level in strategic game systems (such as chess and Go) 1ol autonomously operating cars, intelligent a O r] I I l S ] I l ‘ a S‘ O

routing in content delivery networks, and military simulations.['"?

Artificial intelligence was founded as an academic discipline in 1955, and in the years since has experienced several waves of O O O

aptimism 123! foliowed by disappointment and the 105s of funding (known as an "Al winter). /1% followed by new ] n S u ] C] e n t a m o u n t O a t a
approaches, success and renewed funding I8 arter AlphaGo successfully defeated a professional Go player in 2015

artificial intelligence once again attracted widespread global attention ['7] For most of its history, Al research has been divided

into sub-fields that often fail to communicate with each otner ¥ These sub-fields are based on technical considerations, such

as particular goals (9. “robotics” or “machine tearning”),l'® the use of particular tools ("logic” or antificial neural networks), or

deep philosephical differences. 22231241 gb fields have also been based on social factors (particular institutions or the work of

particular researchers) 121

The traditional problems (or goals) of Al research include reasoning, knowledge repr ion, planning, learing, natural

language processing, perception and the ability to move and manipulate objects. %] General intelligence is among the field's ’ . °

long-term goals 1231 Approaches include statistical methods, computational intelligence, and iraditional symbolic Al. Many tools d o e S n t ] n VO lve C O n S C] O u S n e S S
are used in Al, including versions of search and mathematical optimization, artificial neural networks, and methods based on

statistics, probability and economics. The Al field draws upon computer science, information engineering, mathematics,

psychology, linguistics, philosophy, and many other fields. hd
The field was founded on the assumption that human intelligence "can be so precisely described that a machine can be made a I l p( i rSO n a ] y
to simulate it 2® This raises philesophical arguments about the mind and the ethics of creating artificial beings endowed with

human-like intelligence. These issues have been explored by myth, fiction and philesophy since antiguity. 1 some people also

consider Al to be a danger to humanity if it progresses unabated. 21! Others believe that Al, unlike previous technological
revolutions, will create a risk of mass unemployment 24!

In the twenty-first century, Al techniques have experienced a resurgence following concurrent advances in computer power.,
large amounts of data, and theoretical understanding: and Al techniques have become an essential part of the technology
industry, helping to solve many challenging problems in computer science, software engineering and operations

research 1351181




WHAT IS AN Al TODAY?

THE FUTURE IS NOW

-=_ [

SOCIAL MEDIA E-COMERCE AUTONOMOUS CARS SELF-LANDING ROCKETS
user feeds showing logistics optimization Al Autopilot: Al Autopilot:
individually selected based on predictions machine vision, controlling the

set of data and of user behaviors neural networks, rocket launches,
commercials (big data predictive autonomy flights and
analysis) algorithms landings
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ARTIFICIAL INTELLIGENCE SCHEME

DEEP LEARNING
PREDICTIVE ANALITICS

e MACHINE LEARNING o
NATURAL LANGUAGE Y
PROCESSING
— SPEECH ——
o EXPERT SYSTEMS
® PLANNING, SCHEDULING
& OPTIMIZATION
o ROBOTICS E—
o IMAGE RECOGNITION
— VISION —

TRANSLATION
CLASSIFICATION & CLUSTERING

INFORMATION EXTRACTION




ARTIFICIAL NEURAL NETWORKS

HOW IT WORKS? e

(O Backfed Input Cell
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ARTIFICIAL NEURAL NETWORKS - =+ =

HOW IT WORKS?
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POSSIBLE APPLICATIONS
IN HIGHWAY ENGINEERING

Justra few ideas...
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IMAGE RECOGNITION SYSTEMS
DISTRESSES IDENTIFICATION FROM VIDEOREGISTRATION




AUTOMATIC DISTRESSES IDENTIFICATION
FROM VIDEOREGISTRATION AND LIDAR
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AUTOMATIC DISTRESSES IDENTIFICATION
FROM VIDEOREGISTRATION AND LIDAR
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FULLY INTEGRATED ROAD SURFACE AND SUB-SURFACE
CONDITION ASSESSMENT AT TRAFFIC SPEED

iPAVE COST BENEFITS

A
=1rb

W HAWKEYE

The iPAVe is a powerful tool that uses advanced technologies to collect and

analysefull-spectrum structural, surface and functional road condition data that is

critical for the efficient life-cycle management of road networks, saving billions

towards the fiscus by enabling optimal proactive, rather than reactive,

maintenance strategies to be identified.

Benefits and uses include:

« Significant cost saving per test/metre over traditional structural testing methods

« The measured data is vigorously analysed and used towards the provision of
safer road infrastructure

« Collects all pavement surface and structural parameters with high accuracy
inone pass

« Ability to operate at traffic speeds, improving production, safety and efficiency

+ Continuous measurements at significantly higher resolution than traditional
techniques such as FWD

« Provides comprehensive data with which to make better informed decisions
forfinancially and technically appropriate rehabilitation and surfacing

The first fully
integrated road
surface and
sub-surface
condition
assessment
system,

* Better QA/QC for road agencies, consultants and
contractorsoramotes accountability

In South ‘UsA, Europe 2 e 5

Africa and across s :::; ¢ — b g

the world, there's K, % "I’ﬁm- pected servezble
been a strong uptake in says Balaram
demand for iPAVe from
design engineers and

transportation

specialists

providing
functional and
structural data
at highway
speeds.




AUTOMATIC AND INTELIGENT PAVEMENT
CONDITION ASSESSMENT USING ANN
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Abstract: The traditional manual approach of pavement condition evaluation is being replaced by
more sophisticated automated vehicle systems. Although these automated systems have eased and
hastened pavement management processes, research is ongoing to further improve their perfor-
mances. An average state road agency handles thousands of kilometers of the road network, most of
which have multiple lanes. Yet, for practical reasons, these automated systems are designed to evalu-
ate road networks one lane at a time. This requires time, energy, and possibly more equipment and
manpower. Multiple Linear Regression (MLR) analysis and Artificial Neural Network (ANN) were
employed to examine the feasibility of modeling and predicting pavement distresses of multiple lanes
as functions of pavement distresses of a single adjacent lane. The successful implementation of this

technique has the potential to cut the energy and time requirement at the condition evaluation stage
by at least half, for a uniform multi-lane highway. Results showed promising model performances
that indicate the possibility of evaluating a multi-lane highway pavement condition (PC) by single
lane inspection. Traffic direction parameters, location, and lane matching parameters contributed
significantly to the performance of the ANN PC prediction models.

Keywords: pavement condition; degradation; prediction; artificial intelligence; artificial neural
network; regression analysis; pavement evaluation; Saudi Arabia

1. Introduction

Artificial intelligence (Al) is an emerging area of computer science that uses different
types of machines and sensors to mimic intelligent human behavior. John McCarthy first
introduced Al in 1956 [1]; however, lack of technological innovations by the time limited
its applications. In the following decade (between 1960 to 1970) researchers explored Al
through artificial neural networks (ANNs) and Knowledge-based systems (KBS) [1]. ANNs
are systems of neurons connected in various layers and inspired by the human brain to
solve various complex real-life tasks. On the other hand, KBS systems are computers
that offer guidance based on pre-established rules based on the information fed to them
by humans. Application of the latest Machine Learning (ML) and Deep Learning (DL)
based technologies have revolutionized AL ML and DL have found various applications
in diverse fields such as face recognition and tracking [2], visual tracking [3,4], vision and
language navigation [5-7], and image and video editing [$-10]. In recent years, application
of such soft computing methodologies has received widespread applications for various
civil and transportation ing-related prob luding road safety [11-14], mode
choice modeling [15], energy demand modeling for electric vehicles [16-18], and traffic
sign detection and recognition [19,20]. Similarly, applications of these predictive modeling

approaches are reshaping the field of p: | and
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INTEGRATED AUTOMATIC SYSTEM FOR QC OF MATERIAL
PRODUCTION AND ASPHALT PAVING PROCESS

Introduction

Process control is the maintenance
or control of a certain characteristic
or set of characteristics for a product
during its manufacture o
processing. In aggregate production,
- one of the characteristics controlled
is the gradation of the particles, that
is, the percentage of the sample
retained on or passing
different-sized sieves. The
percentage may vary within a limited
range specified for each sieve. For
example, 25 10 35 percent of the
sample may pass the No. 4 sieve.

Gradation control insures that
. products made from the aggregate
are acceptable and uniform. Undue
changes in aggregate gradation
affect, for example, the optimum
moisture content and maximum
density of base courses, the cement
and waler requirements in portland
cement concrete, and the amount of
| binder required in bituminous mixes.

T

*Standard vieve numbers referred 10 in this
a

Sieve numbers will be used inviead of
measurements.

PUBLIC ROADS  Vol. 4, No. 2

Process Control for
Aggregate Production
and Use

by

Stephen w.‘L Forster
State highway and transportation  but include any technology that can
departments run more than 1 million b adapted to sizing aggregate. In

adation process control tests
annually, at a minimum of $15 per
test. Because these tests require
significant labor time, speeding up or
automating the testing process
would be cost effective. A task was
established under the Federally
Coordinated Program (FCP) of
Highway Research and Development
to examine current test methods and
equipment and develop faster, more
economical methods for monitoring
the gradation of aggregates during
production or use.

The objective of the FCP Task 4F7,
“Process Control for Aggregate
Production and Use, is being
pursued in three ways:

 Shortcuts and alternatives to
standard sieve analysis procedures
are being examined. Alternative tests
currently in limited use are simpler
and faster than standard methods,
even though these tests still are
based on the sieving technique.

« Automated gradation testing is also
being studied. Techniques being
evaluated are not limited to
variations of mechanical screening

5

one approach the testing devic
online with the aggregate production
process; therefore, samples do not
have to be taken to a laboratory for
testing. In another approach a
prototype of an automated
instrument for laboratory testing is
being built.

» Several State highway and
transportation department testing
programs are being studied to
determine the costs and benefits of
shifting responsibility for most of the
gradation testing from the State to
the aggregate producers.

Current Practice

Under the FCP task, the Federal
Highway Administration (FHWA)
Region 10 Office of Federal Highway
Projects (Vancouver, Wash.)
surveyed the status of process
control testing of aggregate
gradation in the United States.
Shortcuts or alternative methods that
had the potential to reduce costs
while maintaining the accuracy of
test results were noted.
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DEVELOPMENT OF RAPID QC
PROCEDURES FOR
EVALUATION OF HMA
PROPERTIES DURING
PRODUCTION

By

Randy C. West

January 2005

National Center for
Asphalt Technol
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Asphalt Paving Quality Control System

DOE 101170361 19811 738680
o combonekr

Sicong Zhu', Xiangdi Li', Haoyang Wang?”, and Dongxiao Yu'

Abstract

‘The asphalt pavement construction morikoring system presented in this paper covers two main asphale pavement construc-
tion processes: hot mix asphak (HMA) plant production and the laydown and compaction operation. The main architecture
of the monitaring system, the development of the required hardware and the software structure, and the implementation
process are presented in this paper. The system i bl to perform automatic dan collection and data trarsmission, 3nd can
automaticaly provide fesdback to the construction site for reaktime asphalt pavement construction quality control. The
entire process works automatially withou much human incervention and covers the entire project throughout the entre
construction period i real time. The monitoring system was successfully implemented in the ZhaoMa Highway construction

,m«ncmmumwumwummw

w2

hown by comparing before and after the

o y
mmmdru system's deployment. Satistical analysis becween asphalc core density and laydown and compaction monitoring
dara, colleced at 20 loasons, indicated that rofing passes were highly correlated with densty, whereas finishing roling tem-
pu:mnud HMA laydown temperature were moderately correlated with densicy. These results imply thit implementation

by this paper. P

pa-m construction quakty.

Since the first highway was established in China in 1988,
the construction of highways throughout the country has
developed rapidly. According to the Chinese govern-
ment's satistcs, by 2015, total highway mikage had
reached 120,000 kam (/).

Unfortunately, highway asphalt pavements have suf-
fered widespread premature failures. In addition o inad-
equate design and eavironmental issues, poor

struction quality is one of the major h
ing to premature failure. Since 2007, Chinese researchers
have conducted extensive research work with regard to
asphalt pavement quality. One area of these efforts is in
the field of quality control of asphall pavement
construction.

Many factors are associatad with pavement construc-
tion quality, with these grouped into two broad cate-
gories. External factors refer to the impact of raw
materials, construction-related machinery, and climate.
Technologies relate to the raw material production and
asphalt paving construction equipment, the development
of which has made satisfactory progress in China in the
last two decadss. The advancements in asphalt binder
and aggregate production technology have sigrificantly
improved the quality of raw materials. The problems of

asphakk construction procedure quality control and asphak

asphalt pavement construction, such as mixture segrega-
tion, have been more effectively controlled through the
use of large mixing plants, large pavers, and otber
advanced equipment

“The human-related factors are those that relate to the
skills and proficiency of the engincers and workers
involved in paving construction operations. It is not sur-
prising that contractors may make some alterations dur-
ing construction for profit purposes, such as changing
production paramters in the mix production plant,
altering the compaction procedure during the compac-
tion operation, or even falsifying test data (2). Results of
research studies have demonstrated that the above-
mentioned factors are the cause of a comsiderable portion
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ROBOTIC MATERIAL SAMPLING AND AUTOMATIC
TESTING

N 7/ ?\VE-‘.'E‘\!A&V/A“

Figure 4. Automated Gradation Device

SYSTEMS

100% INSPECTION WHILE MIXING
SAND AND AGGREGATES

e sand 15 tagged
2) Sensor “B” monitors the incoming sand.
3)  semsor “A”+“B" monitors the sand

and aggregate
4) The next component is mixed and
tested with sensor “A” +7B” + “C”

SAMPLE AVERAGE VALUE

- . 5) Each time a component is added the

1 | mixture is 100% inspected.
| &) The final aggregate mix is ready for
muxing with the asphalt.

0 2 4 6 8
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Figure 5. In-line Asphalt Viscometer

Figure 6. Asphalt Meter Calibration Tank
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Figure 7. Robotic Truck Sampler



REAL-TIME QUALITY CONTROL IN THE QUARRY

TPA GmbH & TIPCO GmbH RESEARCH PROGRAM

THE GRAIN SIZE DISTRIBUTION IN A DYNAMIC PSDIQ vs. Labor
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AUTOMATED OPTIMIZATION OF ASPHALT PAVING

AND COMPACTION PROCESS

Hardwares on
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Roller op. parameters: 1R mew e 51 ont6 oo e A

Type: Ingersoll Rand
DD130,

Speed: 0.7m/s,

Surface Temp: 95.19°C
Acceleration: 0.016 m/s?,
Swerve angular velocity:
0.023 rad/s,

Vibration: No

Figure 4. Composition of HMA paving and compaction quality check system.
Note: RTK = real-time kinematic.
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Figure 6. (a) Web-based roller real-time working status; (b) roller driver working status user graphic interface; and (c) graphic display of
rolling quality statistics.



AUTOMATED PAVEMENT CONSTRUCTION INSPECTION
USING DRONES

Proceedings of the 35" International
Symposium on Automation and
Robotics in Construction (ISARC 2018)

Berlin, Germany, July 20-25, 2018

& The Future
»  of Building

Design .
offira Digital 3D Ground station
B modelofthe, M|
e | project =
Quality
e Instructio
office data B _~ as-built
data
& Shared
. data
On-board  ,,¢e Localisation
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Figure 1: general architecture of a CIRC system
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Figure 3: CIRCOM on-board sub-system MMI

Figure 3. UAS thermal imaging set up on I-69 (A: Placing GCPs, B,C: Pilot flying the UAS, D: UAS
flying at about 24m (80 ft)).

Figure 10. Differential cooling on the freshly placed HMA at the very beginning of the paving (A)

and along the roller tracks (B).
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SMARTER, DIGITAL AND SUSTAINABLE CONSTRUCTION

WalzGen - RESEARCH PROGRAM IN COOPERATION OF TPA GmbH, BOMAG,
RPTU Kaiserslautern AND InfraTest
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PREDICTIVE ANALYTICS

AU



MACHINE LEARNING - PREDICTIVE ANALYTICS

ARTIFICIAL NEURAL NETWORK FOR PREDICTING MATERIALS
PARAMETERS FROM HISTORIC DATA

EXAMPLE: ANN for E* - Dynamic Complex Stiffness Modulus of HMA



PREDICTING DYNAMIC COMPLEX STIFFNESS MODULUS OF HMA
PREDICTIVE EQUATION USED IN AASHTO MEPDG (NCHRP 1-37A)

current most sophisticated approach - Witczak Predictive Equation

\, Vb
log E =—1.249937 +0.020232- p,y, —0.001767-(py, | —0.002841- p, —0.058097 -Va —0.802208 -(;‘fr
B Vb .. +Va
aff

3.871977-0.0021- p, +0.003958 - p;g —0.000017 -(pr +0.005470- pyy
] 4 0603313031335 Llog(f)~0.393532 Iog(1))

+

Where the variables represent:

E Asphalt Mix Dynamic Modulus, i 10° psi

n Bitumen viscosity in 10° poise (at any temperature, degree of aging)

f Load frequency m Hz

Va % awr voids m the mix. by volume

Vb.s %0 effective bitumen content, by volume

iz Yoretamed on the % mch sieve, by total aggregate weight (cumulative)
Pz Yoretamed on the 3/8 mch sieve, by total aggregate weight {cumulative)
Py % retained on the No. 4 sieve, by total aggregate weight (cunmlative)

Prao Yo passmg the No. 200 sieve, by total aggregate weight

FIGURE 26. Revised Dynamic Modulus Predictive Equation
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PREDICTING DYNAMIC COMPLEX STIFFNESS MODULUS OF HMA
STANDARD APPROACH vs. ARTIFICIAL NEURAL NETWORK (MATLAB)
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EXPERT SYSTEMS



VIRTUAL TECHNOLOGIST or EXPERT

HMA / PCC TYPE TESTING DAMAGE CAUSES EVALUATION PREDICTION & PRESCRIPTION
acceleration of the identification & assessment of ability to predict (Predictive
recipe design process the causes of premature Analysis) and prevent errors
and achieving optimal damage to pavements (Prescriptive Analysis) at the
composition solutions or building structures based stage of design, production and
on combined information execution in real time (online)
on material parameters, quality based on constantly flowing
of workmanship and operating data and information
conditions
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