GREEN AND INNOVATIVE APPROACH TO A NEW GENERATION OF ASPHALT PAVEMENT CONSTRUCTION

MECHANICAL – CHEMICAL STRENGTHENED BASE COURSE

CONTENT

Base courses in our Pavements

Application Potential

Pozzolanic reactivity
Frattini test

Verification in the practice

ASPHALT PAVEMENT

DIFFERENCE IN THE BASE COURSE

FLEXIBLE

SEMI-RIGID

CEMENT CONCRETE PAVEMENT

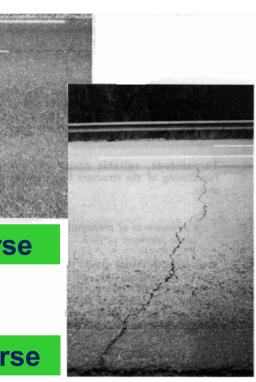
RIGID

The semi-rigid pavements are in Slovakia very popular

Thanks to the high mechanical efficiency of a semi-rigid pavement construction, it results as a winner of optimization process of pavement design

- it is the most economical alternative

In the design phase, the maintenance costs are not taken into account ... (?)



The influence of neglected reflective cracks on the traffic comfort of the road is comparable to the state of degraded joints of cement concrete pavements.

Duplicated crack in the wearing course

Branched crack

MAÚT30 International Scientific Symposium

1-2 Oct 2024, Budapest, Hungary

MAÚT30

MOTIVATION

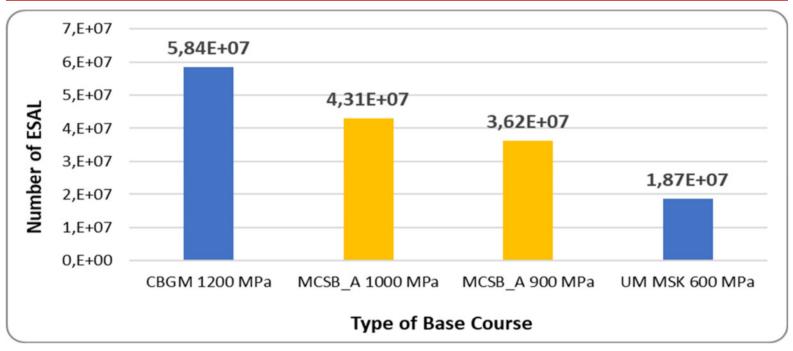
Development of an unbound base layer with the maximum possible load-bearing capacity (modulus of elasticity) by optimizing the composition and looking for further possibilities.

PARAMETERS FOR PAVEMENT DESIGN

Layer	Thickness /mm/	Modulus of elasticity /MPa/	Poisson ratio	Bending strength /MPa/	Fatigue coefficients	
					а	b
AC11 surf	40	6000	0.3	3.2	0.97	0.105
AC16 bin	90	4600	0.3	2.8	0.95	0.11
AC22 base	70	4000	0.3	2.6	0.95	0.11
MCSB_A	170	1000 900	0.25	0.4	1.0	0.097
UM MSK		600	0.25	0.1	•	-
CBGM		1200	0.25	0.5	1.0	0.095
UM SD	220	350	0.30	0.07	•	-
Subgrade	infinity	90	0.35	-	-	-

Design values of elasticity modulus

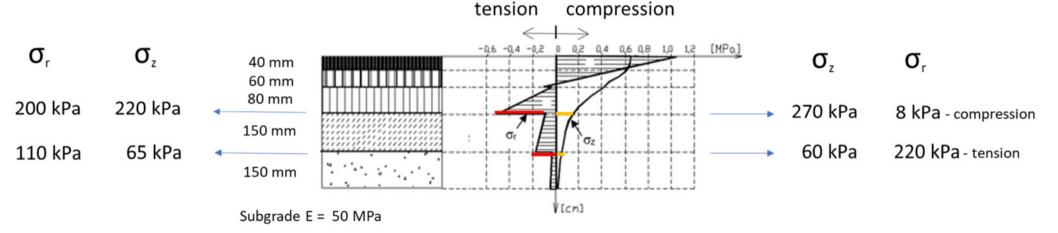
Sensitivity analysis of pavement life



PARAMETERS FOR PAVEMENT DESIGN

Design values of elasticity modulus

Sensitivity analysis of pavement life



PARAMETERS FOR PAVEMENT DESIGN

Stress State in the Pavement

flexible semirigid

Axle load 100 kN, 1 contact area, contact pressure 0,65 MPa, summer conditions

APPLICATION POTENTIAL FOR OUR ROADS

APPLICATION POTENTIAL FOR OUR ROADS

TO THE PROBLEMS

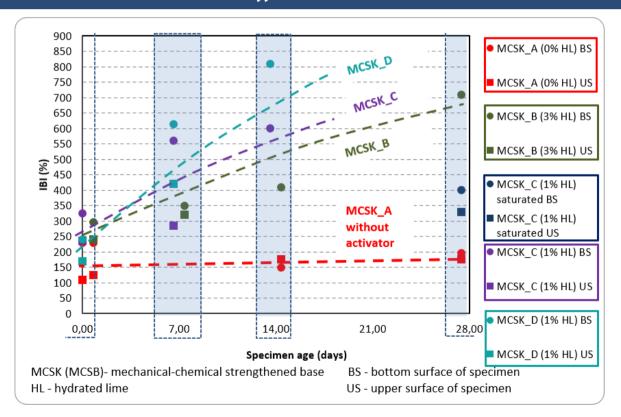
OF REFLECTIVE **CRACKING OF SEMI-RIGID** MAÚT30 **PAVEMENT CONSTRUCTIONS**

MECHANICAL-CHEMICAL STRENGTHENED BASE COURSE

MAÚT30 International Scientific Symposium 1-2 Oct 2024, Budapest, Hungary

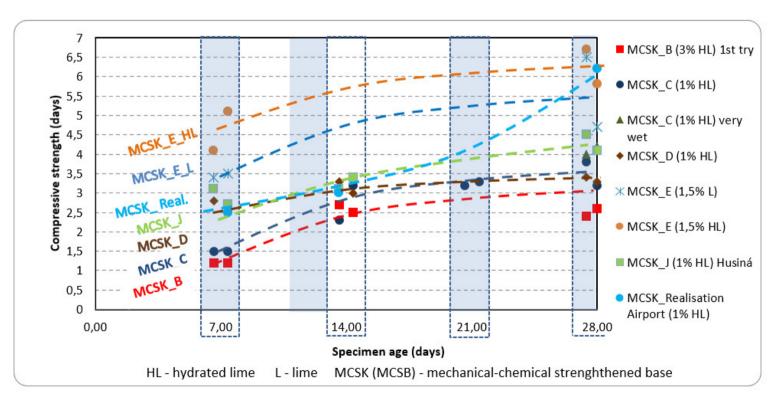
APPLICATION POTENTIAL FOR OUR ROADS

MAÚT30 International MAÚT30 Scientific Symposium 1-2 Oct 2024, Budapest, Hungary



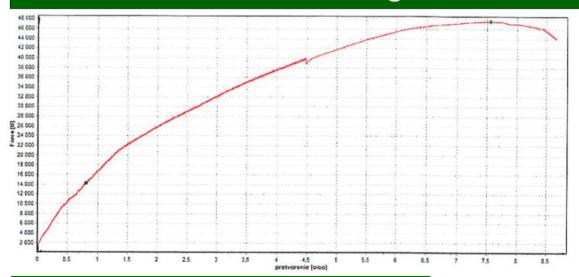
IBI (CBR)

Required test for unbonded base course mix according to TKP 5 Minimum value for "MSK": IBI ≥ 100%



COMPRESSIVE STRENGTH

High IBI values→ Compressive strength testing according to STN EN 13286-41 → Material tends to cemented types (CBGM)

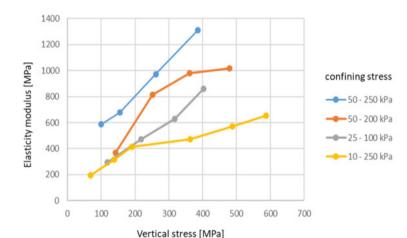


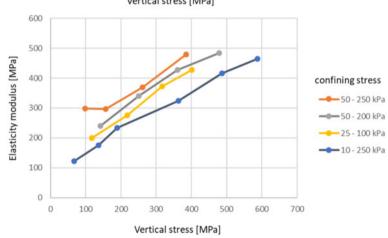
MODULUS OF ELASTICITY

Design values → **Necessary for pavement design**

02.10.2024

Different methods for testing of E modulus




MAÚT30 International
Scientific Symposium
1-2 Oct 2024, Budapest, Hungary

MAÚT30

MAÚT30

MAÚT30

POZZOLANIC REACTIVITY

FRATTINI TEST

Direct method for determining the pozzolanicity of a material

The pozzolanic reactivity is expressed as the concentration of CaO captured by 1 gram of pozzolan in a supersaturated Ca(OH)₂ solution and converted to percent CaO binding efficiency of the pozzolan.

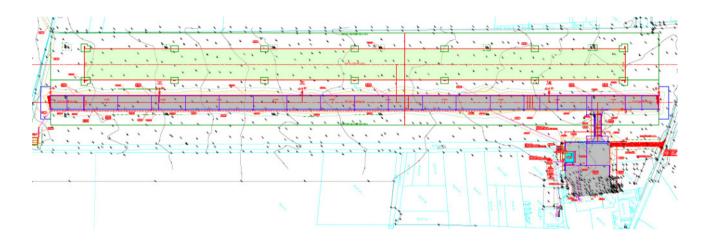
FRATTINI TEST

MAÚT30 International Scientific Symposium 1-2 Oct 2024, Budapest, Hungary

Modernisation: 2018 Contractor: STRABAG Legth of Runway: 1 081 m

The modernisation included the construction of paved movement areas

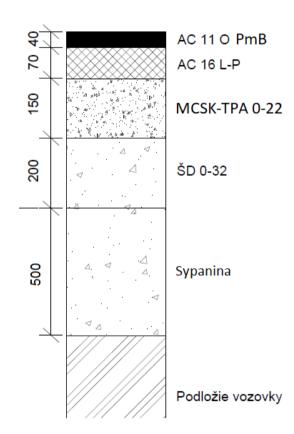
RWY - 26 t. m2 TWY - 600 m2 APN - 6,5 t. m2



02.10.2024

VERIFICATION IN THE PRACTICE

AIRPORT PRIEVIDZA



Volume of built-in MCSB-TPA:

approx. 4 700 m³

approx. 10 700 t

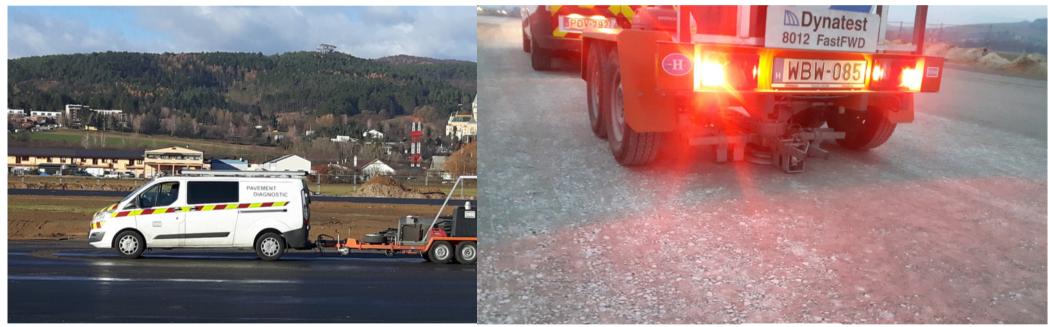
AIRPORT PRIEVIDZA - TRANSPORT TO THE CONSTRUCTION SITE

AIRPORT PRIEVIDZA - LAYING

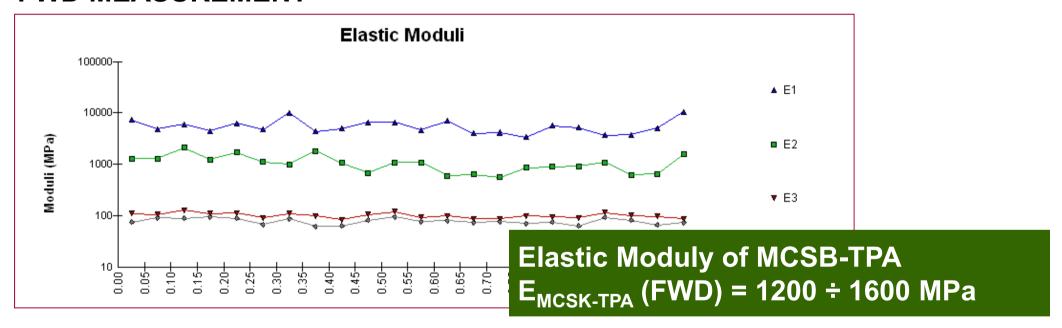
AIRPORT PRIEVIDZA - LAYING

AIRPORT PRIEVIDZA - LAYING

AIRPORT PRIEVIDZA - COMMISSIONING



AIRPORT PRIEVIDZA - VERIFICATION AFTER IMPLEMENTATION FWD MEASUREMENT



AIRPORT PRIEVIDZA - VERIFICATION AFTER IMPLEMENTATION FWD MEASUREMENT

Miesto výroby:

If a building product is not or not fully covered by a harmonized standard, or the parameters of the essential characteristics cannot be fully assessed according to an existing harmonized standard, the notified body may issue a technical assessment.

KSR - kameňolomy SR, s.r.o. IČO: 31559123 Neresnícka cesta 2 960 01 Zvolen

Miesto výroby je dané miestom stavby, ktorú realizuje spoločnosť:

Mlynské Nivy 61/A 825 18 Bratislava Slovenská republika

IC DPH: SK2021761269

CONCLUSION SUCCESSFUL RESEARCH PROJECT

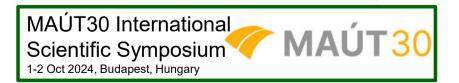
Promising hypotheses based on theory (silicate chemistry)

Confirmation of hypotheses in TPA laboratories

Practical verification - excellent results

2018 – Base Course – airfields in PRIEVIDZA

MAIN ADVANTAGE: USE OF THE RESIDUAL 0/4 CARBONATED FRACTION FROM THE QUARRY



LOW COST PAVEMENT SYSTEMS

2024TRXXEN

AUTHORS/ACKNOWLEDGEMENTS

This technical report has been prepared by the Technical Committee 4.1 Pavements of the World Road Association (PIARC).

The editors-in-chief of this technical report are:

- Venkat LAKKAVALLI (CANADA)
- Zsolt BOROS (SLOVAK REPUBLIC)

The following members contributed to this technical report:

XXX (X)

Other contributors to this technical report: XXX (X).

The language review of the original English version was done by Venkat LAKKAVALLI (CANADA). The translation into French of the original version was produced by Yvette Sèdiro KIKI TANKPINOU (BENIN) and Aīda BERGAOUI SRIHA (TUNISIA). The translation into Spanish of the original version was produced by Mario JAIR (ARGENTINA).

Salome NAICKER (SOUTHAFRICA), Mario JAIR (ARGENTINA) were responsible for the quality control of this technical report.

The Technical Committee was chaired by Margo BRIESSINCK (Belgium), Gina AHLSTROM (USA), Aïda BERGAOUI SRIHA (Tunisia) and Horacio DELGADO ALAMILLA (Mexico) were respectively the English, French, and Spanish-speaking secretaries.

TPA International Business Unit Managers Spring Meeting 15-17.05.2023 15.05.2023

GREEN AND INNOVATIVE APPROACH TO A NEW GENERATION OF ASPHALT PAVEMENT CONSTRUCTION MECHANICAL – CHEMICAL STRENGTHENED BASE COURSE MCSB-TPA

